2.0 THE THEORY OF THE MOTION OF IAPETUS

2.1 INTRODUCTION

The motion of Iapetus, the ninth major satellite of Saturn, is
characterised by significant Solar perturbations and by the large incli-
nation of the orbit to the equator plane of the primary. The dominant

perturbing forces upon Iapetus are, in decreasing order of magnitude :

® The Sun

. Titan

e The oblateness of Saturn

The theory of Iapetus was developed first by H. Struve (1888) whose
model includes periodic Solar perturbations plus secular terms in the
node, apse, inclination and eccentricity. Sinclair (1974) revised
Struve's theory by adding perturbations due to Titan and the oblateness
of Saturn, plus extra Solar terms. Sinclair's aim was to include all terms
greater than 0°.001 in Saturnicentric position, which corresponds to
0".01 seen from Earth at 8.5AU, in order to make effective use of
post-1967 photographic observations of the positions of the satellites

of Saturn.
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Rapaport (1978) suggested that Iapetus is affected by a close
commensurability of its mean motion with that of Titan. The mean motions
are very mnearly in the ratio 5:1 so that SnI - g is 0°.113 per day.
Rapaport added several terms to Sinclair's theory containing the angle
SXI - XT in the argument. He also added a Solar term to the eccentricity

and made a new determination of the mean motion of Iapetus.

The most recent theory of Iapetus is by Harper et al (in submission).
We have added several significant Solar terms, notably in the node, and
we have evaluated the overall size of the 5:1 Titan perturbations, cal-
culating them in a different manner to Rapaport and finding them to be

far smaller than Rapaport suggests.

2.2 USE OF THE NUMERICAL INTEGRATION AS A REFERENCE MODEL

In the current work, Sinclair's (1974) theory of Iapetus was chosen as a
basis for further development since it is the most recent full theory and
it was constructed using standard techniques involving classical orbital
elements. It was thus a relatively easy task to add extra perturbation
terms without re-casting the entire theory. Indeed, Sinclair's theory is

an extension of that of H. Struve.

Following Sinclair and Taylor (1985), the analytic theory of Iapetus

was compared to elements derived from a numerical integration of the
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motions of Titan, Hyperion and Iapetus over a period of 50 vears. The
numerical integration has several properties which make it ideal as a

reference model of this kind

1. Osculating elements can be obtained from the integration at regularly
spaced dates over a long period. By contrast, observational data are
irregularly scattered over the period 1870 to 1983, occurring in small
clusters around each opposition. Data are totally absent between 1930

and 1967.

In addition, it is impossible to extract information about
osculating elements directly from observations whereas a numerical
integration provides elements with little trouble via instantaneous

position and velocity vectors.

2. A numerical integration which has been fitted to observations
(Sinclair and Taylor (1985)) is a dynamically consistent represen-
tation of the real satellite system. The force model of the inte-
gration is mnot a truncated approximation (as is the case with the
disturbing function of an analytical theory) and thus the integration
implicitly contains all periodic perturbations limited only by the

accuracy of the coordinates produced by the integration calculations.
Comparison of the elements from the analytical theories with those

obtained from the integration indicates periodic terms which may have been

omitted from the theories. Knowledge of the periods of these terms and
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their approximate amplitudes enables them to be identified in the expan-

sion of the disturbing function.

The numerical integration used in this work is that of Sinclair and
Taylor (1985). Its force model includes Solar perturbations, the second
and fourth harmonics of the gravity field of Saturn, and mutual satellite
perturbations including those due to Rhea (though Rhea's effect upon
TIapetus is negligible and is effectively a small augmentation of Saturn's
J, coefficient). The numerical integration method is described in detail

2

in chapter 5.

2.3 DISCUSSION OF RESIDUALS FROM SINCLAIR'S THEORY
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Figure 1. Integration-minus-theory residuals

In Figure 1 we show graphs of the residuals in the eccentricity, apse,
inclination, node and mean longitude of Iapetus. The elements are referred
to the mean Equator and Equinox of B1950 and the residuals are in the
sense Integration-minus-Theory. Thus they represent the terms to be added
to the theory in order to make it agree with the integration. The resi-
duals are formed by taking the difference Integration - Theory at in-
tervals of 15 days and calculating average values every 300 days from
groups of 20 points. By this method we may eliminate terms of short pe-
riod (less than 150 days) to enable the long-period behaviour of the el-

ements to be seen more clearly.
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The residuals are scaled so that the graphs show the effect upon the
observed positions of the satellite at a mean opposition distance of 8.5
AU. In particular, this means that the graphs labelled 'Apse' and 'Node'
are plots of eA® and sin i AQ respectively and hence they can be compared
directly with the graphs of Ae and Ai. Column (a) shows the residuals
between the integration and the theory of Sinclair (1974) whilst column
(b) shows the residuals between the integration and the improved theory

developed in this chapter.

All the elements in column (a) show residuals which are of long pe-
riod. The period of the residuals in the eccentricity, inclination and
apse is 3500 days while that of the node is around 10000 days. Recalling
that the mean orbital period of Saturn is 10759 days, we may immediately
identify these residuals as Solar perturbations. The terms we seek in the
Solar disturbing function have arguments which contain the mean longitude
of the Sun but not that of Iapetus. The derivation of these Solar terms

is given in the next section.

The most noticeable feature of the perturbations in the mean longitude
is a periodic term with a period of approximately 3000 days. It is
superimposed upon a term which is secular or of very long period (indi-
cated with a dotted line). The periodic term closely matches the period
of the 5:1 Titan perturbations discussed by Rapaport. This is investigated
further in a subsequent section, where we shall show that fhe introduction

of 5:1 Titan perturbations reduces the residuals in the mean longitude.
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2.4 SOLAR PERTURBATIONS UPON IAPETUS

As a first step in calculating the perturbations upon Iapetus due to the
Sun, we must develop an expansion for the disturbing function of the Sun.
This is given by the following expression (for the derivation, refer to

appendix C).

[1] R = 6Mf1 - r.r
] sf__ ='=s
A r?
s s
where G = gravitational constant
MS = mass of the Sun
A = the distance between the Sun and Iapetus

r = the Saturnicentric position vector of Iapetus

the Saturnicentric position vector of the Sun
ro=| z_|

] —Ss

We may write this as

=
I

=
[2] GMS/rS é{(l + (r/rs)2 -2 (r/rs)cos X) - (r/rs)cos X/;

-4
p
GMS/rS 25 (r/rs) Pp(cos X)

where Pp(x) is the Legendre polynomial of order p.
Now r/rS is a small quantity of order 0.0025, so we need only take the

first term. We write

[3] R, = 6M_/r_ (x/r)? (-3 +22 cos?X).

By Kepler's third law, we have
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[4] n %2a ?® =0GM
and we may re-write the expression for RS as

[5] R, =n_%a? (r/a)?(a_/r)? (-3 +§cos2xy

We must now express RS in terms of the orbital elements of Iapetus and

the Sun. The expansions of powers of the radii vectores are straightfor-

ward and may be found in Brouwer and Clemence (1961). In order to evaluate

cos?X we consider the orbit planes of Iapetus and the Sun referred to the

ecliptic and equinox of B1950.0 as in the accompanying figure.

Orbit of lapetus

Orbit of
Sun

O=TA+AB
I'= TA+ AB+BP
A=TA+AB+BP+1

Ecliptic
1950-0

Figure 2. The orbits of Iapetus and the Sun
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I and S denote Iapetus and the Sun respectively and P and Ps are the

pericentres of Iapetus and the Sun. The notation is as follows.

g = BP gS=BPS

f =PI f =PS
s S

3 = CB 0 = QS + AB

I = QS + AB + BP = 0 + BP

w=§8 + CP w =8 + AP
s s S

From the formulae of spherical trigonometry we have
[6] cos X = cos(g + f) cos(gS + fs) + cos 1 sin(g + f) sin(gs + fs)

where f = the true anomaly of Iapetus
g = the argument of the apse of Iapetus i.e. the arc of
the orbit from the ascending node upon
the reference plane to the apse
f, g, are the corresponding quantities for the Sun

n = the inclination of the orbit of Iapetus to that of the Sun.

We may rewrite this in terms of the mean anomalies and eccentricities
by substituting the equation of the centre for both bodies (see for ex-
ample Brouwer and Clemence (1961)). Substitution of the elliptic expan-
sions and evaluation of the resulting series for R is é lengthy process
and so the computer algebra package CAMAL-F was employed. CAMAL-F is de-
signed to handle the Fourier series of celestial mechanics and it includes

facilities for making substitutions of the form

[7] O = ¢ + a Fourier series
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of which the equation of the centre is an example. The CAMAL-F program

for expansion of the Solar disturbing function is given in Appendix A.

We seek those terms in the disturbing function which contain the mean
anomaly of the Sun but not that of Iapetus. In addition to the terms given

by Sinclair (1974) we find six significant terms.

2 .2 2 _ 2 A
[8] L= (9/8)n ? a* e P (1 - 6¥ + 6 ¥") cos 22

o]
I

[9] R, = (105/16)ns2 a? e e? (1 - 2¥%) cos(BQS +2g. - 28)
[10] R, = (51/4)ns2 a? es2 ¥ (1 - ¥ cos(AQs + 2g)

[11] R, = (21/4)1152 a? e ¥2 (1 -% 2 cos(3QS +2g)

[12] R, = —(3/4)ns2 a? e ¥2(1 - ¥%) co§(zs + 2g)

[13] R, = (3/4)ns2 a? e (1 -6 %%+ 6 ¥*) cos 2

where we have written ¥ = sin(n/2)

In order to simplify the calculation of the perturbations, we use
elements of the orbit of Iapetus referred to the orbit plane of the Sun
about Saturn. We define elements A, T and O corresponding to mean lon-
gitude, apse and node as in Figure 2 on page 13. The Lagrange planetary

equations become
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e =& IR

&

[14]

de At e
15 féT' = ! (i "fgzﬁag ;7 §26242
B ae T w e e P 55
6] 94 - 5 - 2R +,§_i@+é«77451,_&_/§
A& agagda Qg Ie na* 97
) 47 - _ 1 / IR

Ade eﬂaa I Al *-,2"“2 @

Ao . | 1 ar
A& nat 4y 32

[18]

where only the lowest power of the eccentricity has been retained. We

express the arguments of the disturbing function as functions of A, T and

© using

[19]
g=T-28 g, =@ -0

s ]
and we calculate the derivatives of the elements substituting each term
of the disturbing function into the planetary equations. We assume all
the elements on the right hand side of the equations to be constants,
except for the mean longitudes which are assumed to vary at constant

rates. Upon integration, we obtain the perturbations in e, T, n and ©

which we denote by Ae, AT, An, AQ
The form of the perturbation in the eccentricity is independent of
the choice of reference plane and so Ae may be quoted directly. However,

in order to obtain expressions for the perturbations in the node, apse

The Theory of the Motion of Iapetus 16



and inclination with respect to the ecliptic and equinox of B1950 we must
apply transformatiomns to AI'y, An and AQ. Consider the spherical triangle

ABC in Figure 2 on page 13. We may write

cos 1

[20] sin 1 cos (Q—QS)

cos iS cos N - sin iS sin n cos (@-QS)

sin iS cos N + cos is sin n cos (O-Qs)

sin i sin (Q—QS) sin n sin (O-QS)

from which may be obtained the following derivatives (see appendix B)

3i/3n = + cos ¥ R 31/830 = - sin ¥ sin 7

[21] sdin i 3R/3n + sin ¥ ; sin 1 3R/30 = 4+ cos ¥ sin 7

sin i 33/9n - sin ¥ cos i ; sin i 39/30 = + sin is cos (Q-QS)

and hence to first order we may write

Adi = cos ¥ An - sin ¥ sin n AO
[22] sin i AR = sin 9 An + cos ¥ sin n AO
sin 1 AY = - sin ¥ cos 1 An + sin iS cos (Q-QS) AO.

We note also that

[23] wW=T-0+Q+%
therefore
[24] Aw = AT - AO + AQ + AS.

From Figure 1 on page 10, we expect the dominant perturbation in the
eccentricity and apse to have a period which is one third that of the Sun.
Consequently, its argument must contain the angle 328. We notice also from

the Lagrange planetary equation for de/dt that in order for a term to
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contribute to Ae, its argument must contain T, and hence in the original
expression for RS, it must contain g, the apse of Iapetus. The only term

satisfying these requirements is R2. From this term we find

[25] he = (35ns/8n) ee VI -e (1 - 2%%) cos(BQS + 2g - 2g)

[26] e A= (35n_/8n) e e V1 - e? (1 - 2%¥%) sin(38_ + 2g_ - 2g).

We now calculate the perturbations in the node and inclination. From
equation [22] we see that Ai and sin i AR can be expressed as a combina-
tion of An and A@. Consider a term in the disturbing function with argu-

ment Y. Its contribution to An may be written

[27] An = A cos Y

and AO may be written

[28] AO = B sin Y

where A and B are functions of n, n_, e, e and ¥ obtained from the
Lagrange planetary equations. They may be treated as constants. Substi-

tuting into equation [22] we obtain

(A + B sinm) cos (Y +9) + (A - B sin 1) cos (¥ - 9)

>
.
]

[29]

m
[
B
[
>
=2
]

(A + B sinn) cos (Y +9) + %(A - B sinn) cos (¥ - 9).

As an example we consider the term R4
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- 2.2 2 ) 2
R4 21/4 n_“a eSX (1 ¥°) cos (32,S + Lgs).

We substitute equations [19] into the argument of the term :

[30] Y = 325 + ng = 3XS R I 20

then

[31] de/dt = 21/8 (nsz/n) e (1 - 2¥%) cos (32S + 2gs)
giving

[32] AD = 7/8 (ns/n) e (1 - 2¥?) sin (SQS + ZgS)

and

[33] dn/dt = -21/4 (nsz/n) e (1 - 3¥?) sin (sas + 28 )
giving

[34] An = 7/8 (ns/n) e (1 - 3¥2) cos (BQS + ZgS)

SO we may write

>
1l
ofi=
od
N
~—

7/4 (ns/n) eSX(l - 3

ve)
]

7/8 (ns/n) esX(l - 2¥%).
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The terms Rl’ R3, R5 and R6 are treated in exactly the same way. We

present the coefficients A and B for each of the terms in tabular form

below.
Term Argument A B
(1)
- 2
R1 ZQS 0 (27ns/l6n) e’y
2 = 2
R3 425 + ng (51ns/16n) ¥ e < (Jlns/32n) e’y
- 12 - 2
R4 3£S + ZgS (7ns/4n) e ¥(1 3¥%) (7ns/8n) e (1 2%%)
- - 1yx2 - - 2
R5 RS + ng (3ns/4n) e ¥(1 38%) (3ns/8n) ey (1 2%%)
R6 ES 0 —(9ns/4n).es

We adopt the following values for the elements of the orbits of the
Sun and TIapetus. The elements are referred tc the mean Ecliptic and
Equinox of B1950.0. and are for the epoch JD 2409786.0 (1885.67). These
elements change very slowly and the coefficients of the terms are rather
small so we do not introduce significant errors by adopting fixed values

for the nodes, inclinations and eccentricities. For the Sun
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and for Iapet

n = 4°.53795711 /day

i
o

0°.0334

2°.4909

us

= 18°.460

597 /day e, = 0.05560
QS = 113°.158
e = 0.028796
(0]
6 QO = 143°.1209

From the spherical triangle ABC in Figure 2 on page 13 we may write

sin
[36] sin

CcOs

and we obtain

n sin <

n cos ¥

= sin is sin (Qo - QS)

=cos i sini_ -sin i cos i cos (R - Q)
s o s o o S

cos i_cos i + sin i sin i cos (8 - Q)
] o s o o s

.348, ¥ = 0.14218, ¥ = 4°.423.

Since ¥ is a small angle, we may neglect it when calculating the co-

efficients of the perturbations in i and Q. The coefficients themselves

are rather small and the effect of assuming ¥ = 0 will be negligible. It

has the advantage of reducing the number of terms to be added to the ex-

pressions for the perturbations in i and Q, since instead of two terms

with arguments Y + ¥ and Y - ¥ we will have only one term with argument

Y.
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We present below the terms to be added to Sinclair's (1974) theory

as a result of this work.

[37] Ae = +0.00000496 cos (32S + ng - 2g)

[38] e Aw = +40.00000496 sin (32S + ZgS - 2g) radians

[39] Ad = +0°.0005 cos (42S + ZgS) + 0°.0058 cos (32S + ng)
-0°.0024 cos (e, + 28)

[40] sin i AR = -0°.0006 sin 20+ 0°.0003 sin (4zs+ 2g.)

+ 0°.0028 sin (32 + 2gs)-o°.0012 sin (2 + 2g) - 0°.0142 sin 2

2.5 THE 5:1 QUASI-RESONANCE DUE TO TITAN

Comparison of Sinclair's (1974) theory of Iapetus with the numerical in-
tegration reveals a periodic residual in the mean longitude with an am-
plitude of 0".1 arc-seconds and a period of 3000 days. This may be
identified with a 5:1 quasi-resonance due to Titan which was first noted
by Plana (1826). It arises from the fact that the mean motion of Titan

is very nearly five times that of Iapetus.

[41] Snp - np = 0°.113 per day
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Thus

[42] v = nI/(SnI - nT) = 40.2

which suggests that terms which include SXI - XT in their argument may
give rise to significant perturbations in the mean longitude since the

coefficients of such terms include the square of this factor.

This was developed by Rapaport (1978) who investigated a number of
these terms using a method attributed to J.L. Simon. Rapaport concluded
that such terms may have Saturnicentric amplitudes up to 90 arc-seconds
which corresponds to 0".25 as seen from the Earth at 8.5 AU. The residual
plot of the mean longitude in Figure 1 on page 10 (column (a)) shows an
amplitude of only 0".1 as seen from 8.5 AU and this leads us to suspect
that Rapaport's work overestimates the net size of the quasi-resonance

terms and gives a somewhat misleading impression of their importance.

We set out to re-calculate these terms using the method employed by

Sinclair in his (1974) revision of the theory of Iapetus.

2.5.1 THE DISTURBING FUNCTION

We seek all terms in the disturbing function of Titan upon Iapetus which

include 52 - QT in the argument. (% denotes the mean anomaly of Iapetus
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and ZT the mean anomaly of Titan). We use the expansion of the planetary
disturbing function developed by Newcomb in volume 5 of the "Astronomical

Papers for the Use of the American Ephemeris'. Using Newcomb's notation,

we find that the following sets of indices give suitable terms

(1) k=2 3 =0 ' =0 i=3
(2) k=1 i=2 i'"=0  i=4
(3) k=1 i=1 j' =1 i=3
() k=1 i=0 j' =2 i=2
whence
[43] R =(3/8)n%a’m ¥*(a’bsy’ -g 0% (b 27 + bi’)) cos(52-L,+5g -g1)

— 2.2 2 g2 212 4 - -
[44] R2 (1/16)n%a M e . ¥° a(31 + 120D, + a«“DZ ) b%h cos(5¢ 2T+Sg1 3gT)

- _ 2.2 2 212 ¢3) - -
[45] R3— ((1/8)n*a*m,. e er ¥ a(50 + 16ab, + a®D7 ) bu? cos(5¢ 2T+4g1 2gT)

T

- 2.2 2 42 2n2 <2 - -
[46] R4 (1/16)n*a m, e ¥ a(85 + 20al), + o®DZ ) b’k cos(5¢ £T+3g1 gT)

sine of half the mutual inclination of the orbits of Titan

where ¥

and Iapetus
¢ = ratio of the semi-major axes of Titan to Iapetus = 0.34303
Dx = the differential operator d/da
b1 are Laplace coefficients.

S
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These terms have been verified by deriving them independently from

Pierce's (1849) expansion of the planetary disturbing function.

2.5.2 CALCULATION OF THE PERTURBATION IN THE MEAN LONGITUDE

We follow the method of Sinclair (1974) and calculate the perturbations
of the elements of the orbit of Tapetus referred to the orbit plane of
Titan. This introduces an error since the orbit plane of Titan is not
fixed but varies slowly due to the influence of the Sun and the oblateness
of Saturn. However, the inertial terms may be neglected in this work

since they are very small.
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Orbit of
Titan

Orbit of lapetus

®=TE+ED
I'=TE+ED+DP
A =TE+ED+DP+I

Ecliptic

19500 7~ / E 1950-0

Figure 3. Reference frame for Titan perturbations

The notation is as follows
QT =TE o =TE + EP
¢ = CD ¢ =TE + ED

gl=DP

The relevant Lagrange planetary equations are

[47] &£ ‘_92627&
de  Aa g/

&
]

ey N = n- IR , € IR . R IR
A& Aa da Nt e ad 5’%"

The Theory of the Motion of Iapetus
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dO _ a 2R

A& Ac'sin € &
[50] ds §21§Z§m§Y§ — / IR
A& na* N Aa’so§g IO

and the perturbation in the mean longitude referred tc the Ecliptic and

Equinox of B1950 may be written

[51] AN = AL - AOD + AR + A¢

where (cf. Solar perturbations)

[52] sin 1 (AR + A¢) = sin ¢ (1 - cos i) AZ

+ (sin & cos ¢ + sin iT cos (R - QT))AO.

We note that the mean motion n in the equation for dA/dt must include

the perturbations from Aa : since n?a® is a constant we have

[53] An/n = -3/2 Aa/a
or
[54] dn/dt = -3/a%® 8R/3A.

Thus the first part of AA contains the double integral
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dn 42 _ _ 3 R s
[55] {,J(; £ = dajﬁ% af

If we denote the mean rate of change of the argument of a given term in
R by k then the process of integrating 3R/3A twice with respect to time
will introduce a factor 1/k?. In the case of the 5:1 terms under consid-
eration, k is a small quantity and hence 1/k? will be large. We expect
the double integration of dn/dt to yield the most significant part of

AA for such terms.

In the next section we derive the perturbation in )\ from a general

5:1 term in the disturbing function.

2.5.3 DERIVATION OF AA FROM ANY 5:1 TERM

Consider any of the 5:1 terms in R given in section 2.5.1; we may write

it as
- 2122 . _ . )
[56] R = n*a uTB sin (5¢ QT + jg JTgT)
where B is a dimensionless function of e, ers ¥ and o

J jT are integers.

We may split AX (equation [51]) into four parts
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1. A term arising from the double integration of dn/dt

2. A term arising from the double integration of dA/dt - n

3. The term -AO® in equation [51] plus the contribution of A® to AQ+A¢

(equation [52])

4. The contribution of Af to AQ+A¢.

We may write accordingly

[57] Ak = A+ A2 4\ 4 gy

It is instructive and convenient to treat each part separately. We first

make the substitutions

into the argument of the term, which becomes

5+ (3 - 5)T + (jT- o - kT + (1 - jT)wT.

Inspection of the Lagrange planetary equations shows that we shall
only be concerned with the coefficients of A and O since we are not re-
quired to evaluate the derivatives of the argument with respect to any

of the other angles. We note, therefore, that the coefficient of A is 5
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and that of 0 is jT- j, and we may resume writing the argument in terms
of ¢, QT’ g and & For brevity, we denote the argument of each term simply

as Y = 52 - QT + jg - and we denote the important ratio n/(5n - nT)

I8t

by v. The value of v is approximately 40.

Term (1)

The mean motion is dependent upon the semi-major axis by virtue of
Kepler's third law, which implies that n2?a® is constant for each satel-
lite. Thus a perturbation in the semi-major axis requires a balancing

perturbation in the mean motion. Thus we have

[58] 2 An/n = -3 Aa/a

from which we may obtain

[59] d?x¢1?/dt? = dn/dt = -3/a® 3R/34A

which upon integration twice yields

[60] ANCYY = -15 vzuTﬁ sin ¥

where, as we have said, Y is the argument of the term. This part of AX
will later be shown to be the largest since it contains the factor v
which augments the other factors in the coefficient by three orders of

magnitude.
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Term (2)

The remainder of dA/dt after removing n (which we have dealt with as’

term (1)) gives us di‘¢?’/dt :

[61]4—;\ - XK, e KR , ¥ IR

‘ 2)
dE da ga et de Qad d)

where ¥ = sin £/2 replaces & as the inclination parameter. In order to

evaluate 3R/%a it is more comnvenient to write R as

[62] R = kzuT B sin Y
a
using Kepler's third law to write k2(M + my) = n?a® but neglecting m.

since it is very small in relation to M, the mass of Saturn.

Then R depends upon the semi-major axis directly, and indirectly via

B which is a function of o = aT/a. Clearly,

63 IR = lzgﬂrg?(ﬁ;) ST

Ja da \ a
and
da\d a® a da e
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The derivatives of R with respect to e and ¥ are straightforward since

the dependence is solely via B. Hence we have

) _
[65] ?_1_3 = Nl 502([34—0( )+§§£ 5;’? cos P

and thus

@ V/’(T{Q(ﬁ *dgﬁ) +é P L7 3P Vsin @

[66] A4A &; A 09/)

Term (3)

We may combine the -AO in equation [51] with the part of AQ+A¢ which

contains A®. Denote this by X¢3®’. Then

[67]
d ¢’ = nu. (-1 + (sin & cos ¢ + sin i cos (R - Q )1151n 1)-—éwg
T T ! 32‘
and thus
[68]
AN = vy (-1 + (sin & cos ¢ + sin i, cos (R - Q ))/51n 1)~=-"§?-£‘g
T T Ly 3y
Term (4)

The remainder of AQ+A¢ has a factor Af. Denoting this by AA‘*’ we have
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[69] AX‘*? = sin ¢ (1 - cos 1i)/sin i AZ.

Thus

i

(70] d2A = —apr S’f'\"\‘{)(’/"c&dLDFé SA T

dE S &

and hence

[71] Ajaa}: M %4} (,— ‘{‘ D,j ig cd T
Sen L

2.5.4 NUMERICAL VALUES OF THE COEFFICIENTS

We shall use the following numerical values of the constants to evaluate

the coefficients of the 5:1 terms.

e -Q= 26°.370 i, = 27°.659

a = 0.34303 e, = 0.0288

W = 2.412 1074 ¥ = 36°.1322
Hence

£ = 13°.6964 ¢ = 60°.5514
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The values of the nodes and inclinations vary over long periods of time,
but it is sufficient to adopt fixed values since the variations in the

coefficients will be very small.

The Laplace coefficients are evaluated from their power series ex-
pansions. We present the contributions from each of the four parts of

A\ in the table below.

Term R1 R2 R3 R4

Argument 58 - g 5g - 3g; bg - 287 3g - g

- (58-2.)

Coefficient of sine (argument)

AXCY? -10.13 - 2.96 +17.29 -25.96
AN¢Z? + 0.46 + 0.04 - 2.13 + 0.49
AX¢3? + 0.75 + 0.12 - 0.67 + 1.01
SUM - 8.92 - 2.80 -14 .49 -24 .46

Coefficient of cosine (argument)

AXNSR? - 0.04 - 0.01 4+ 0.03 - 0.05

As expected, the most significant part of the coefficient of sine
(argument) comes from AX‘'’. The coefficients of cosine (argument) from
AX‘*? are entirely negligible and may be ignored. Indeed, if the deriva-
tion of these terms had been carried out rigorously i.e. with respect to
a fixed reference frame rather than the orbit plane of Titan, then there

would be no cosine terms at all in the perturbation in the mean longitude.
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We may now write in full the perturbation in the mean longitude due

to the 5:1 quasi-resonance with Titan.

[72] AX = -0°.00248 sin (50 - bp + 58, - &)
-0°.00078 sin (5% - bp t 58y - 3gp)
+0°.00403 sin (52 - QT + 4g1 - ZgT)
-0°.00679 sin (52 - Ly + 38 - gp)

2.5.5 COMPARISON WITH RAPAPORT'S COEFFICIENTS

Rapaport (1978) carried out his derivation of the 5:1 terms with respect

to the equator and equinox of B1950. In his notation we have

2 mean anomaly of Titan

g’ mean anomaly of Iapetus

g ,h argument of the apse and longitude of the node of
Titan

g' ,h' argument of the apse and longitude of the node of
Tapetus
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Orbit of Titan

Orbit of
lapetus

pa—y Ecliptic
T 1950-0 c / E 1950-0

Figure 4. The orbits of Titan and Iapetus

In Rapaport's notation

In Sinclair's notation

¢ =CD ¥ = ED.

We may relate Rapaport's notation to that of Sinclair by writing
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Rapaport > Sinclair

+
) QT
2! - g
-+ +
8 ¢+ g
! -
g Y+ 8,
-)
h RT
h' -+ Q

In this context, the symbol » is to be read as 'is replaced by'.

Using

these substitutions we may transform the arguments of Rapaport's 5:1 terms

into a form equivalent to our development. For example, in Rapaport (1978)

Table 2 we find the term

-42".64 sin (52 - 52' + g - 5g' + h - h').

The argument of this term becomes, upon substitution,

bp - SR+t g

= Bp - 50+ gL - Sg k(- 56+ Q- Q).

T - 5(¢+g1) + QT - Q

The first part of this argument varies quite rapidly and may be recognised

as the argument of the term in equation [43] and of the first term of

equation [72], though with the opposite sign due to Rapaport's notation.

The second part may be regarded as a slowly-varying quantity since it

contains only angles depending upon the nodes and inclinations of the
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orbits, which vary over periods of the order of several hundred to several

thousand years.

Carrying out this transformation upon the terms given by Rapaport in
his Table 2, we notice that the first five terms share the same rapidly-
varying part and they correspond to the term in equation [43]. Likewise,

Rapaport's terms 6 and 7 have a rapidly-varying part

RT - 52 + & - 3g1

and terms 8, 9 and 10 have a rapidly-varying part

L. - 52 + 2gT - 4g

T 1

Thus they correspond to the terms given in equations [46] and [45].

Consider the first five terms of Rapaport (1978) Table 2. We may write

them as
5 .

[73] 2:,61 sin (QT - 52 + gr - Sgl + Yi)
ogE

where ¢ is the amplitude given by Rapaport and Yi is the slowly-varying

part of the argument, a linear combination of ¢, ¢ and QT- 2. Now write
[74] C,=c,sin¥, , S, =c, cos ¥Y..
i i i i i

Then [73] may be written as

The Theory of the Motion of Iapetus 38



(Sl 51n(2T 52 + & - Sgl) + C:,L cos(QT 58 + &1 Sgl))

[75]
=t

5
YIS,
3
g -
,gl) + (}:C ) cos(QT 58 + &7 5g1).

(E;Si\ sin(f; - 58 + 87 -

and Si using values of ¢, ¥ and

We may evaluate the coefficients Ci

QT- ¢ derived from Sinclair (1977)

Q@ = 142°.574 1 = 18°.3206
= o - o
QT 1687 .944 1T 277 .659
and hence
¥ = 36°.132

¢ = 60°.551

where all values are for the epoch JD 2415020 and are referred to the

ecliptic and equinox of 1550.

We find that Rapaport's terms reduce to
1" . - 1 - -
+ 127.28 51n(RT 58 + &r Sgl) + 37.98 cos(QT 5¢ + &1 Sgl).
Repeating this operation upon Rapaport's other 5:1 terms yields
1" . - 1 ~ - -
+ 207.90 51n(£T 5¢ + = 3g1) 77.33 cos(QT 52 + &1 Sgl)
39
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and

1" . 1t
157.99 51n(2T 5¢ + ZgT 4g1) 9" .44 cos(lT 5¢ + ZgT 4g1).

The following table gives a comparison of Rapaport's 5:1 terms with those

derived in this work.

Argument Our coefft. Rapaport's coeffts. No. of terms
-(SQ-QT) of sin(arg) sin(arg) cos(arg) in Rapaport
58 - & - 8".92 -12".28 +3".98 5
5g - 3g; - 2".80 0
4g - 2. +14".49 +15".99 -9" 44 3
38 - g -24" . 46 -20".90 -7".33 2

There is good agreement in the magnitudes of the coefficients when they
are written in this form. We note that when Rapaport's terms are combined
and written in a physically more meaningful way, their amplitudes are far
smaller than Rapaport's published coefficients (1978, table 2) would

suggest.
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2.6 COMPARISON OF THE THEORIES WITH THE NUMERICAL INTEGRATION.

We now compare the theories of Iapetus developed in this chapter with the
numerical integration of Sinclair and Taylor (1985). We may identify four

variants of the theory of Iapetus

1. Sinclair (1974).

2. Harper et al (1) : Sinclair (1974) plus solar terms in eccentricity,

apse, node and inclination developed in this chapter.

3. Harper et al (2) : Harper et al (1) plus the 5:1 Titan terms in the

mean longitude developed in this chapter.

4. Harper-Rapaport : Harper et al (1) plus the 5:1 Titan terms developed

by Rapaport (1978).

Each of these theories is fitted to the numerical integration by a process
of repeated corrections to the elements of the orbit of Iapetus. Thus the
comparison shows how closely the chosen theory represents the reference
integration, rather than how closely it represents the real orbit of
Iapetus. However, the integration itself has been obtained by fitting
to photographic observations over a period of some 15 years. Moreover,
as explained in the introduction to this chapter, the integration may be
regarded as a dynamically consistent representation of a satellite system

which closely resembles the real system over a limited span of time. We
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may expect that a comparison of the various theories with this integration
will provide an indication of the precision of such theories when we

eventually test them against observational data.

The process of fitting the theories to the integration yields the
residual differences between the position of Iapetus given by the inte-

gration and the position given by the chosen theory. If we write

r, = position of Iapetus at any time given by
the numerical integration
r, = position of Iapetus at the same time given

by the theory

then the residual of greatest interest in the comparison is

As part of the fitting process, we obtain values of s at 1216
regularly-spaced dates across the 50-year span of the integration. We
form the root-mean-square of these values and we note the maximum value
for each theory once the fitting process has converged. In the table below
we give the values of the RMS and maximum residual for each of the theo-

ries.
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Theory Root Mean Square Maximum
Residual (A.U.) Residual (A.U.)
Sinclair 0.00000543 0.00002023
Harper et al (1) 0.00000401 0.00001586
Harper et al (2) 0.00000348 0.00001311
Harper/Rapaport 0.00000382 0.00001387

Comparison of the values for Sinclair and for Harper et al (1) shows
the significant improvement made by the addition of the Solar perturba-
tions. Both the RMS and maximum residuals are reduced by a quarter. This

is principally due to the term in the node
sin 1 AR = -0°.0142 sin P

The maximum effect of such a term upon the Saturnicentric position of
Tapetus is 0.0000 0590 AU. The reduction in the maximum residual is of
this order and we may attribute the greater part of this reduction to the

main term in the node.

The effect of this long-period term in reducing the RMS residual is
much smaller since the contribution of the term to AR varies in size as
|sin QSI varies over the period of the term. During a third of the period
of‘this term, for example, |sin Qs| is less than a half. We should note
that the interval over which the comparison is being made (50 years) is

only a little more than one and a half periods of the term and so we may
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not expect its contribution to be properly reflected in the RMS residual.
Nonetheless, the significance of this term and the other Solar terms is
clear from the 25% reduction in the RMS residuals. This corresponds to
approximately 0".034 as seen from 8.5 AU ; the reduction in the maximum

residual corresponds to 0".106 at 8.5 AU.

We may also see the improvement in the theory by considering the
graphs  of the averaged residuals of the osculating elements plotted as a
function of time. In Figure 1 on page 10 we show the residuals from
Sinclair's (1974) theory in column (a) and those from "Harper et al (2)"
(i.e. Sinclair (1974) plus Solar terms in node, inclination, apse and
eccentricity plus 5:1 terms in the mean longitude derived by the method
of Sinclair) in column (b). The significant periodic residual in the node
has been removed, as have the periodic residuals in inclination, eccen-

tricity and apse.

Now we consider the improvement to the theory due to the addition
of the 5:1 quasi-resonance terms in the mean longitude. The residual
graphs of the elements show that the periodic residuals in 8\ have been
almost eliminated by the addition of the 5:1 terms developed in this

chapter.

Comparison of the RMS and maximum theory-minus-integration residuals
also shows some interesting results. The improvement in the fit of the
theory to the integration may be seen by comparing the RMS residuals of
Harper et al (1) i.e. without 5:1 terms, and Harper et al (2) which in-

clude these terms. The RMS residual has been reduced by 53 parts in 401
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or approximately 13%. This is about half as large as the improvement
produced by the addition of the Solar terms and corresponds to 0".013 as
seen from 8.5 AU. Again, the reduction in the maximum residual is larger
in absolute terms, though it is of the same relative size, some 17% of
the maximum residual from Harper et al (1). This reduction corresponds

to 0".067 seen from 8.5 AU.

The overall reduction in RMS and maximum residuals produced by addi-
tion of the Solar terms and the 5:1 Titan terms may be summarised as

follows.

RMS

Maximum

Absolute reduction
Relative reduction

Equivalent arc at

0.00000195 AU
35.9%

0".047

0.00000712 AU

35.2%

0".173
8.5 AU -

The terms developed in this chapter significantly improve the close-
ness of the fit between the analytical theory of Iapetus and the motion
of the satellite as given by Sinclair and Taylor's integration. Both RMS

and maximum residuals are reduced by one third.

Sinclair and Taylor fitted Sinclair's (1974) theory to photographic
observations of the satellites made between 1967 and 1982 and obtained a
root-mean-square residual in the Titan-Iapetus data of 0".22. The new
theory of Iapetus has an RMS residual nearly 0".05 smaller than Sinclair's

theory when compared to the integration. This 1is a significant fraction
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of the 0".22 residual of Sinclair and Taylor and we may expect a similar

improvement when the new theory is compared to the same photographic data.

Comparison of the residuals given by the Harper-Rapaport theory with
those for Harper et al (1) shows the effect of adding Rapaport's 5:1
terms. The reduction in the RMS residual is less than half that produced
by adding the 5:1 terms developed in this chapter, and the reduction in
the maximum residual is only 3/4 as large. Rapaport's development of the
5:1 terms is incomplete as it only includes 3 of the &4 terms which have
been included in this work. However, Rapaport's (1978) paper omits much
detail such as analytic expressions for the coefficients in his table 2
and the Values of the constants used to evaluate them. As a consequence,
further critical analysis of his 5:1 terms in comparison with the deri-
vation herein cannot be made. It is sufficient to note that the 5:1 terms
developed in this chapter are to be preferred to Rapaport's terms in the

form in which Rapaport presents them.
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